Pi Günü, ünlü matematik sabiti pi sayısı'nı kutlamak için oluşturulmuş bir gündür.
Her yıl 14 Mart'ta kutlanır. (Amerikan tarih formatında 3/14 olarak göründüğü için)
Pi Günü Türkiye'de ilk kez 2007'de Manisa Odtü Ülkem Koleji'nde kutlanmıştır.
"Pi, bir dairenin çevresinin çapına oranıdır."
Pi sayısı (π), bır çemberin çapına bölümü ile elde edilen matematik sabiti. Pi sayısı ismini, Yunanca περίμετρον yani "çevre" sözcüğünün ilk harfi olan π harfinden alır. Bu harf Latin Alfabesi'nde Pİ ile sembolize edilir. Ayrıca pi sayısı Arşimet sabiti ve Ludolph sayısı olarak da bilinir.
Günlük kullanımda basitçe pi approx{3.1416} olarak ifade edilmesine rağmen gerçek değerini ifade etmek için periyodik olarak tekrar etmeyen sonsuz sayıda basamağa ihtiyaç vardır. İlk 65 basamağa kadar ondalık açılımı şöyledir: Çapı "1" olan Daire'nin çevresi "π" olur.
Peki Pi Sayısını Kim bulmuştur?
Pi'yi Nasıl Hesaplarız ?
Doğum Gününüzün Pi nin İçinde Olduğunu Biliyor Muydunuz?
Yunan alfabesinin 16. harfidir. Bu harf, aynı zamanda, Yunanca çevre (çember) anlamına gelen "perimetier" kelimesinin de ilk harfidir. İsviçreli matematikçi Leonard Euler, 1737 yılında yayınladığı eserinde, daire çevresinin çapına oranı söz konusu olduğunda, bu sembolü kullandı. Leonard Euler'den önce gelen bazı matematikçiler tarafından da, bu sembol kullanılmıştır. Ancak, Leonard Euler'den sonra gelen, tüm matematikçiler bu sembolü benimseyip kullandılar.
Ayrıca, doğal logaritmanın tabanı olan 2, 71828... sayısı için, L. Euler'in kullandığı e harfi, sembol olarak bütün matematikçiler tarafından kullanılmaya başlanmış, benimsenmiştir. Gene, karekök içinde -1 imajineri için de, L. Euler ile birlikte i sembolü kullanılmaya başlanmış ve genelleşmiştir.
Kaynaklar pi sayısı için, ilk gerçek değerin, Archimedes tarafından kullanıldığını belirtir. Archimedes; pi sayısının değerini hesaplamak için bir yöntem vermiş ve pi değerini 3+1/7 ile 3+10/71 arasında tespit etmiştir. Bu iki kesrin ondalık sayı karşılığı 3,142 ve 3,1408 dir. Bu iki değer, pi sayısının, bugünkü bilinen gerçek değerine çok yakın olan bir değerdir. Ancak Archimedes'in gençlik yıllarında Mısır'da uzun bir süre öğrenim gördüğünü hesaba katarsak Babilliler'in çok eski zamanlardan beri, kullanılan yaklaşık bir bilgiye sahip oldukları anlaşılmıştır. Genel olarak pi=3 değerini kullanıyorlardı. Bazı tabletlerde pi=3,125 değeri ne de rastlanılmıştır. Aydın Sayılı, adı geçen eserinde, "Mezopotamyalılar'da, idealleştirilmiş çemberlerle üçgenlerdeki geometrik münasebetler aracılığıyla, çözümlenen problemlerde teorikleştirilmiş ve soyutlaştırılmış bir durum mevcuttur" der. Böyle problemlerde sonuç hesaplanırken pi sayısı için, değerinin kullanılmış olduğunu belirtir.
Bu değeri; Mezopotamyalılar takribi sonuçlar için kullanmaktaydılar. Daha iyi yaklaşık sonuçlar elde etmek istedikleri zaman pi=3,125 değerini uygularlardı. Ancak pi sayısının; Mısırlılar'ınkinden ve Susa tabletlerinin gösterdiği değerden oldukça daha iyi bir değeri, ilkin Archimedes tarafından bulunmuştur. Kaynaklar; Mezopotamyalılar, yamuk alanı hesabı ile, silindir ve prizma hacim hesaplarını bildiklerini ve pi için de 3 değerini kullandıklarını belirtir. Fakat eski Babil çağına ait olup, Susa'da bulunmuş olan tabletlerde pi için kabul edilen değerin 3,125 olduğu anlaşılmaktadır.
Tahmin edebileceğiniz gibi, artık
Ancak, sizin burada sorduğunuz sorunun, bu hesabın, daire ve çap ilişkisi kullanılarak nasıl yapılabileceğinin, ya da tarihsel olarak nasıl yapıldığının açıklanması olduğunu varsayıyorum.
Şekil'de yarıçapı r olan bir dairenin içine bir kare oturtulmuş. Bu kareyi, daireye bir yaklaştırma olarak düşünüyoruz. ABC üçgeni ikizkenar olduğundan, karenin yarım kenar uzunluğu a=r/2'dir. Bu durumda karenin çevresi L=8a=4
2r, alanı A=(2a)²=(
2r)²=2r² olur. Karenin çevresini, dairenin çemberine eşitlersek, L=2
r eşitliğinden, 4
2r=2
r veya
=2
2 elde ederiz. Bu yaklaştırma bize,
=2,828427 verir. Halbuki, karenin alanını dairenin alanına eşitlediğimizde, A=
r² eşitliğinden, 2r²=
r², yani
=2 elde ederiz. Bu yaklaştırma, çemberin çevreye eşitlenmesiyle elde edilenden daha kötü.
Şimdi yaklaştırmamızı bir adım daha ileri götürmek üzere, bu sefer dairenin içine, bir kare yerine, eşkenarlı bir sekizgen oturtalım. Alttaki 2 numaralı şekilde bu durum görülüyor. Eşkenarlı sekizgenin kareye göre fazlalık alanları sarı renkle tonlandırılmış. AD uzunluğu r'ye eşit ve a=r/
Öte yandan, BCD üçgeninin alanı a.b/2= (r/
Bir sonraki yaklaştırma aşamasına, dairenin içindeki eşkenar sekizgen, bir eşkenar onaltıgene genişletilerek geçilebilir.
Ancak. Eski Greklerin yaptığı buna benzer çalışmalarda söz konusu sabite,
Aşağıda bu hesaplamaların tarihçesini gösteren bir alıntı var. İlave edeceğimiz tek şey, sıra kendisine geldiğinde Arşimed'in, alanları hesaplamak yerine çevreyi kullanarak
Sözü uzatmamak için şunu söyleyelim: Sizin sorduğunuz 3,14159... hassasiyetine ulaşanlar Çin'li Tsu Ch'ung-chih ve oğlu Tsu Keng-chih'dir. Çemberin içine tam 24 526 köşeli bir çokgen çizip hesabı yaptılar ve
Evet, örneğin bir konserve kutusu alarak çevresini ve çapını ölçüp oranlarsak,
Bu arada, "o sabit sayı"ya
pi kronolojisi
Doğum Gününüz Pi'de Gizli
Aynı şekilde, istediğiniz başka dizileri pi'nin içinde arama şansınız var. Ancak unutmayalım ki, Pi'nin bilinen basamakları 1.2 trilyon civarında ama bunları ağ üzerinde tutmak çok fazla yer tuttuğundan, bulmak kolay değil.
http://www.super-computing.org/pi-decimal_current.html adresinde ilginç gözlemler bulabilirsiniz. Örneğin
ilk 1 milyon basamak içinde, birçok şeyin yanında, şunlar gözlenebiliyor:
0123 - 102 kere
01234 - 8 kere
012345 - 2 kere
0123456-0 kere .
Pi nedir:
Matematikçi: "Pi, bir dairenin çevresinin çapına oranıdır."
Bilgisayar Programcısı: "Pi 3,14159265389 dur"
Fizikçi: "3,14159artı eksi 0,000005'tir"
Mühendis: "Yaklaşık 22/7'dir"
Kaynak: wikipedia.org, tubitak.gov.tr, msxlabs.org, netmatematik.com
Hiç yorum yok:
Yorum Gönder